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SUMMARY

Indicator functions are constructed under the linear-quadratic parametrization for contrasts,
and applied to the study of partial aliasing properties for three-level fractional factorial designs.
An algebraic operation is introduced for the calculation of indicator function coefficients. This
operation connects design construction methods to the analysis under the linear-quadratic sys- 15

tem, and helps establish simple conditions for the estimability of interactions.

Some key words: Fractional factorial design; Generator-transformation design; Partial aliasing.

1. INTRODUCTION

1·1. The utility of the linear-quadratic parametrization
Fractional factorial designs help address the challenge of screening and estimating main ef- 20

fects and interactions simultaneously for experiments with many factors and run size constraints.
An important issue in their construction and subsequent analysis is the parametrization for fac-
torial effects. The orthogonal components system (Wu & Hamada, 2009, p. 274) is a standard
parametrization that facilitates calculations of design properties for regular fractions. However,
it has two major disadvantages: it can induce a simple aliasing structure, with any two contrasts 25

either perfectly correlated or orthogonal (Ye, 2004), and it does not yield substantive interpreta-
tions for interaction components of quantitative factors.

These facts are illustrated in the example of a 34−1IV design with quantitative factors (Wu &
Hamada, 2009, p. 267–269, 281). If a pair of aliased two-factor interactions is judged significant
in its orthogonal components analysis, then conclusive inferences on specific interactions can- 30

not be made without further runs. One alternative system that does yield conclusive inferences
and interpretable contrasts is the linear-quadratic system, generated by reparametrizing the factor
levels using orthogonal polynominals (Wu & Hamada, 2009, p. 61, 287–288). The capacity for
estimating two-factor interactions is better under the linear-quadratic system (Wu & Hamada,
2009, p. 292–293) because they are only partially aliased, in the sense that the absolute correla- 35

tion of any pair of two-factor interaction contrasts is strictly less than 1. Although this design is
regular, i.e., constructed by aliasing relations in a finite field, the linear-quadratic system yields
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a nonregular analysis through the introduction of partial aliasing. This enables a sequential strat-
egy for de-aliasing factorial effects and identifying significant interactions that would otherwise
be missed, with no need for further runs (Hamada & Wu, 1992; Wu & Hamada, 2009, p. 292).40

For all these reasons, the linear-quadratic system is preferable to orthogonal components.
However, the mathematics of the linear-quadratic system are not yet as transparent as the field

theory basis for orthogonal components. A better understanding of the partial aliasing properties
of this system is achieved with the indicator function of a design, and the focus of the current
paper is to further develop the theory of indicator functions under the linear-quadratic system.45

1·2. Previous applications of indicator functions
Based on the algebraic perspective of Pistone & Wynn (1996), Fontana et al. (2000) introduced

the indicator function of unreplicated two-level fractional factorials, and proved the important
fact that indicator function coefficients describe correlations between contrasts. Both Ye (2004)
and Pistone & Rogantin (2008) considered indicator functions for designs with factors having50

more than two levels, but coded the levels by the complex roots of unity. A complex coding
may be concise and amenable for generalizations to different settings, but we instead code factor
levels with orthogonal polynomials, which may ultimately be used when fitting a model for the
response, e.g., as in response surface methodology. Cheng & Ye (2004) considered indicator
functions under the linear-quadratic system, and defined the concept of geometric isomorphism55

to consider changes in design properties corresponding to permutations in factor levels.

2. INDICATOR FUNCTIONS UNDER THE LINEAR-QUADRATIC PARAMETRIZATION

Let D be a 3s full factorial, with the levels of factors A1, . . . , As denoted by −1, 0, 1, cor-
responding to 0, 1, 2 modulo 3 in the standard field notation. Field theory succinctly describes
certain designs, and so it is necessary to move between these two notations. For example, when60

translating the regular fraction in Table 1 into linear-quadratic notation, runs having A1 at level
0 and A2 at level 1 must have A3 at level −1 in the linear-quadratic system, corresponding to
1 + 2 = 0 modulo 3 in the field notation. It is also necessary to refer to orthogonal arrays having
N runs, s factors, each with three levels, and strength t, and they are abbreviated as OA(N, s, 3, t).

Table 1. Design with A3 = A1 +A2 modulo 3. Three columns on the left represent the design
under field notation, and the three on the right represent it using linear-quadratic notation.

Field Theory Linear-Quadratic
A1 A2 A3 A1 A2 A3

0 0 0 −1 −1 −1
0 1 1 −1 0 0
0 2 2 −1 1 1
1 0 1 0 −1 0
1 1 2 0 0 1
1 2 0 0 1 −1
2 0 2 1 −1 1
2 1 0 1 0 −1
2 2 1 1 1 0

The indicator function F : {−1, 0, 1}s → {0, 1} for a fraction F ⊆ D is the mapping with65

F (x) = 1 if x ∈ F and 0 otherwise, which can be extended for replicated runs using the gener-
alized indicator function (Ye, 2003). This function is expressed as a unique linear combination
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of orthogonal contrast functions under the linear-quadratic system (Cheng & Ye, 2004). For each
i ∈ {1, . . . , s}, functions Xi,L, Xi,Q : Rs → R are defined as

Xi,L(x) = xi, Xi,Q(x) = 3x2i − 2.

These correspond to linear and quadratic contrasts for the main effect of Ai (Wu & Hamada, 70

2009, p. 287). For distinct i1, . . . , ik ∈ {1, . . . , s}, and any T1, . . . , Tk ∈ {L,Q}, define

Xi1...ik,T1...Tk(x) =
k∏
j=1

Xij ,Tj (x), (1)

which corresponds to the T1 . . . Tk interaction contrast of Ai1 , . . . , Aik . Define Xφ,φ(x) ≡ 1,
corresponding to the overall average. Functions {XI,T (x) : I ∈ P, T ∈ TI} form an orthogonal
basis for D, where P is the set of all concatenations of distinct elements from {1, . . . , s}, and TI
is the set of all concatenations of |I| elements from {L,Q}. This is summarized by the following 75

lemma, given by Fontana et al. (2000) for two-level designs, and Cheng & Ye (2004).

LEMMA 1. For I1, I2 ∈ P and T1 ∈ TI1 , T2 ∈ TI2 ,
∑

x∈DXI1,T1(x)XI2,T2(x) 6= 0 if and
only if I1 = I2, T1 = T2.

Lemma 1 implies that the indicator function is a unique linear combination of basis functions in
(1): there exist unique bI,T ∈ R for all I ∈ P, T ∈ TI such that 80

F (x) =
∑
I∈P

∑
T∈TI

bI,TXI,T (x). (2)

Partial aliasing relations can be read from the indicator function coefficients bI,T . The correla-
tion of two contrasts having distinct factors is positively proportional to the coefficient involving
all the factors, and correlations between contrasts involving the same factors are simple functions
of these coefficients.

Calculation of the bI,T will be demonstrated later. At this point, the indicator function for the 85

design in Table 1 is given to illustrate how representation (2) is connected to partial aliasing:

F (x) =
1

3
− 3
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1
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1

8
x1(3x

2
2 − 2)x3 −

1

8
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2
2 − 2)(3x23 − 2)

+
1

8
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1

8
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2
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8
(3x21 − 2)(3x22 − 2)x3
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1

24
(3x21 − 2)(3x22 − 2)(3x23 − 2).

Coefficients involving one or two factors are zero precisely because the involved contrasts are 90

orthogonal in this design. For example, b12,LL = 0 because the linear main effect of A1, denoted
by (A1)L, is orthogonal to the linear main effect of A2, (A2)L. Alternatively, these coefficients
are zero because the contrasts represented by these basis functions are valid, in the sense that
they are orthogonal to the vector of ones. Thus, b12,LL = 0 because the two-factor linear-linear
interaction between A1 and A2, i.e., the difference in the conditional linear effects of A2 be- 95

tween the high and low levels of A1 (Wu & Hamada, 2009, p. 288), denoted by (A1A2)LL, is
orthogonal to (1, . . . , 1)′ ∈ R9. Also, the correlation between (A1A2)LL and (A3)L is propor-
tional to b123,LLL = −3/8, and the correlation between (A1A2)LL and (A1A3)LL is proportional
to b123,QLL + b23,LL = 1/8, with different, but positive, proportionality constants for both.
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3. THE KRONECKER PRODUCT OPERATION ON FACTORS100

Calculation of indicator function coefficients involving all linear effects is accomplished by
Corollary 2.2 in (Cheng & Ye, 2004). The following proposition summarizes a new calculation
for coefficients involving at least one quadratic effect. All proofs are in the appendix.

PROPOSITION 1. For distinct i1, . . . , ik ∈ {1, . . . , s}, and T1, . . . , Tk ∈ {L,Q} with
T1, . . . , Tj = L, Tj+1, . . . , Tk = Q, and 1 ≤ j < k, define105

Bi1...ik,T1...Tk =


bi1...ij ,T1...Tj , k = j + 1,

bi1...ij ,T1...Tj +

k−j−1∑
m=1

 ∑
l1,...,lm∈{j+1,...,k}:

l1<...<lm

bi1...ijil1 ...ilm ,T1...TjTl1 ...Tlm

 , k > j + 1.

Then

bi1...ik,T1...Tk = 2−k3k−s
∑
x∈F

Xi1,L(x)
a1 · · ·Xik,L(x)

ak −Bi1...ik,T1...Tk , (3)

where a1 = · · · = aj = 1, and aj+1 = · · · = ak = 2.
Also, define

Bi1...ik,Q...Q = bφ,φ +

k−1∑
m=1

 ∑
l1,...,lm∈{1,...,k}:

l1<...<lm

bil1 ...ilm ,Q...Q

 .

Then

bi1...ik,Q...Q = 2−k3k−s
∑
x∈F

Xi1,L(x)
2 · · ·Xik,L(x)

2 −Bi1...ik,Q...Q. (4)

There are three points to note. First, Proposition 1 involves bφ,φ = |F|/3s (Cheng & Ye, 2004).110

Second, it connects low-order and high-order coefficients, and shows how factors with linear
effects carry through. If a set of factors form an orthogonal array of strength t, then all coefficients
involving t or fewer of these factors are zero. As described later, the combination of this fact with
Proposition 1 illuminates calculations of a design’s properties. Third, if interest lies in specific
high-order coefficients, the calculation method of Cheng & Ye (2004, p. 2173) is better.115

To demonstrate Proposition 1, consider Table 1. This is an orthogonal array of strength 2, so
bi1,T1 = bi1i2,T1T2 = 0 for distinct i1, i2 ∈ {1, 2, 3}, and any T1, T2 ∈ {L,Q}. Then:

b123,LLQ =
1

8

∑
x∈F

X1,L(x)X2,L(x)X3,L(x)
2 = −1

8
,

b123,LQQ =
1

8

∑
x∈F

X1,L(x)X2,L(x)
2X3,L(x)

2 = −1

8
,

b123,QQQ =
1

8

∑
x∈F

X1,L(x)
2X2,L(x)

2X3,L(x)
2 − bφ,φ =

3

8
− 1

3
=

1

24
.

This shows how Proposition 1 eliminates the need to deal with quadratic contrast functions.120
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Proposition 1 is used to define an operation for factors under the linear-quadratic system that
enables one to read from the design in linear-quadratic notation to calculate the bI,T . For any
i ∈ {1, . . . , s}, define Fi,L = {x ∈ F : xi = 1}, Fi,Q = {x ∈ F : xi = −1}. By Proposition 1,

(
bi,L
bi,Q

)
= 2−131−s

(
1 −1
1 1

)(
|Fi,L|
|Fi,Q|

)
−
(

0
bφ,φ

)
.

Coefficients for factors Ai1 and Ai2 are then obtained by a scaled Kronecker product of
Hadamard matrices, and an intersection of the sets defined above, again by Proposition 1. Specif- 125

ically, defining Fi1i2,T1T2 = Fi1,T1
⋂
Fi2,T2 for any T1, T2 ∈ {L,Q},

bi1i2,LL
bi1i2,LQ
bi1i2,QL

bi1i2,QQ

 = 2−232−s


2

⊗
j=1

(
1 −1
1 1

)

|Fi1i2,LL|
|Fi1i2,LQ|
|Fi1i2,QL|
|Fi1i2,QQ|

−


0
Bi1i2,LQ
Bi1i2,QL

Bi1i2,QQ

 .

We formally define Ai1 ⊗Ai2 = (bi1i2,LL, bi1i2,LQ, bi1i2,QL, bi1i2,QQ)
′.

This operation is easily extended to more than two factors: Ai1 ⊗ · · · ⊗Aik is defined as
the vector of indicator function coefficients, in a lexicographic ordering of linear and quadratic
effects, involving all these k distinct factors. To write this explicitly, define 130

Fi1...ik,T1...Tk =

k⋂
j=1

Fij ,Tj

for any Ti1 , . . . , Tik ∈ {L,Q}. Then, by Proposition 1,

Ai1 ⊗ · · · ⊗Aik = 2−k3k−s


k

⊗
j=1

(
1 −1
1 1

)



|Fi1...i(k−1)ik,L...LL|
|Fi1...i(k−1)ik,L...LQ|
|Fi1...i(k−1)ik,L...QL|
|Fi1...i(k−1)ik,L...QQ|

...
|Fi1...i(k−1)ik,Q...LL|
|Fi1...i(k−1)ik,Q...LQ|
|Fi1...i(k−1)ik,Q...QL|
|Fi1...i(k−1)ik,Q...QQ|


−



0
Bi1...i(k−1)ik,L...LQ

Bi1...i(k−1)ik,L...QL

Bi1...i(k−1)ik,L...QQ

...
Bi1...i(k−1)ik,Q...LL

Bi1...i(k−1)ik,Q...LQ

Bi1...i(k−1)ik,Q...QL

Bi1...i(k−1)ik,Q...QQ


.

Thus, counts of ±1 level combinations are sufficient for calculating indicator function coef-
ficients under the linear-quadratic system. Applying an affine transformation to these counts by
first performing a scaled rotation, corresponding to the scaled Hadamard matrix built by the Kro-
necker product, and then a shift by coefficients of lower order, consisting of factors with linear 135

effects and subsets of factors with quadratic effects, yields coefficients involving all factors of in-
terest. This suggests a geometric view, with affine transformations of counts of runs determining
partial aliasing properties. Fontana (2013) provides another view on Kronecker products.
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Example 1. Consider the design in Table 2. As this is an orthogonal array of strength 2,
nonzero indicator coefficients must involve at least three factors. By counting the |F123,T1T2T3 |,140

A1 ⊗A2 ⊗A3 = 2−33−1


3

⊗
j=1

(
1 −1
1 1

) (0, 0, 1, 0, 1, 0, 0, 1)′ −
(
0, 0, 0, 0, 0, 0, 0,

1

9

)′
=

(
−1

8
,− 1

24
,
1

24
,− 1

24
,
1

24
,− 1

24
,
1

24
,
1

72

)′
.

Similar computations are performed for A1 ⊗A2 ⊗A4, A1 ⊗A3 ⊗A4 and A2 ⊗A3 ⊗A4,
leading to the result that A1 ⊗A2 ⊗A3 ⊗A4 = (0, . . . , 0)′. Thus, two-factor interactions in-
volving distinct factors are orthogonal in this design.145

Table 2. Design withA3 = A1 +A2,A4 = A1 + 2A2 modulo 3. Four columns on the left repre-
sent it under field notation, and the four on the right represent it using linear-quadratic notation.

Field Theory Linear-Quadratic
A1 A2 A3 A4 A1 A2 A3 A4

0 0 0 0 −1 −1 −1 −1
0 1 1 2 −1 0 0 1
0 2 2 1 −1 1 1 0
1 0 1 1 0 −1 0 0
1 1 2 0 0 0 1 −1
1 2 0 2 0 1 −1 1
2 0 2 2 1 −1 1 1
2 1 0 1 1 0 −1 0
2 2 1 0 1 1 0 −1

Example 2. Construction of an OA(18, 6, 3, 2) by the Kronecker sum operation on a difference
matrix (Wang & Wu, 1991) makes calculation of the indicator function particularly enlightening.
The difference matrix D6,6;3 is defined as

D6,6;3 =


0 0 0 0 0 0
0 1 2 0 1 2
0 2 1 1 0 2
0 0 2 1 2 1
0 2 0 2 1 1
0 1 1 2 2 0

 ,

and the array is constructed by the following transformation involving addition modulo 3: D6,6;3

D6,6;3 + J modulo 3
D6,6;3 + 2J modulo 3

 ,

where J is the 6× 6 matrix with all entries equal to 1. The correspondence between runs 7–12150

and 1–6, and also between runs 13–18 and 1–6, illuminates the calculation of indicator function
coefficients. For example, for distinct factors i1, i2, i3,

|Fi1i2i3,LLL| = |Fi1i2i3,QQQ| =
∑

x∈D6,6;3:
xi1=xi2=xi3

1 = 1.
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In addition,

|Fi1i2i3,LLQ| =
∑

x∈D6,6;3:
xi1=xi2 ,
xi3=xi1+1

1, |Fi1i2i3,QQL| =
∑

x∈D6,6;3:
xi1=xi2 ,
xi3=xi1+2

1.

From the definition of a difference matrix,∑
x∈D6,6;3:
xi1=xi2

1 =
∑

x∈D6,6;3:
xi1=xi2=xi3

1 +
∑

x∈D6,6;3:
xi1=xi2 ,
xi3=xi1+1

1 +
∑

x∈D6,6;3:
xi1=xi2 ,
xi3=xi1+2

1 = 2,

hence |Fi1i2i3,QQL| = 1− |Fi1i2i3,LLQ|. Similarly, |Fi1i2i3,QLQ| = 1− |Fi1i2i3,LQL| and 155

|Fi1i2i3,QLL| = 1− |Fi1i2i3,LQQ|. Thus, only |Fi1i2i3,LLL|, |Fi1i2i3,LLQ|, |Fi1i2i3,LQL|, and
|Fi1i2i3,LQQ| are necessary to calculate Ai1 ⊗Ai2 ⊗Ai3 , and each is 0 or 1, as determined by
D6,6;3 in the manner described above.

These calculations highlight an analogy between the construction of a design and its analysis
under the linear-quadratic system, and the construction of regular fractional factorials and their 160

analysis under orthogonal components. Field theory provides both a method to construct designs,
namely, regular fractions, and a corresponding method of analysis, the orthogonal components
system, that facilitates calculations of aliasing relations. For the linear-quadratic system, calcula-
tions for indicator coefficients, hence partial aliasing relations, are built through the ⊗ operation
in a similar manner for designs constructed by transformations of generators, e.g., orthogonal 165

arrays based on difference matrices. Constructing a design through its rows is important for the
linear-quadratic system, and such designs, referred to as generator-transformation designs, are
to the linear-quadratic system as regular fractions are to orthogonal components. Cheng & Wu
(2001) and Bulutoglu & Cheng (2003) provide further examples of such designs.

4. PARTIAL ALIASING RELATIONS FOR OA(3n, s, 3, n) 170

Proposition 1 aids in the exploration of partial aliasing relations in OA(3n, s, 3, n) by facili-
tating derivations of relationships among indicator function coefficients. It is used to prove that
coefficients for any n+ 1 factors are invariant to permutation of linear and quadratic effects in
absolute value, and that coefficients for any n+ 2 factors are zero.

PROPOSITION 2. For factorsA1, . . . , An+1 in an OA(3n, s, 3, n) and T1, . . . , Tn+1 ∈ {L,Q}, 175

|b1...(n+1),T1...Tn+1
| = |b1...(n+1),Tψ(1)...Tψ(n+1)

|

for any permutation ψ on {1, . . . , n+ 1}.

COROLLARY 1. For a design with An+1 = c0 + c1A1 + · · ·+ cnAn modulo 3, where
A1, . . . , An form an orthogonal array of strength n and c0, . . . , cn ∈ {0, 1, 2},

|b1...(n+1),T1...Tn+1
| = |b1...(n+1),Tψ(1)...Tψ(n+1)

|

for any T1, . . . , Tn+1 ∈ {L,Q} and permutation ψ on {1, . . . , n+ 1}. 180

To illustrate, for Table 1, |b123,LLQ| = |b123,LQL| = |b123,QLL| and |b123,LQQ| = |b123,QLQ| =
|b123,QQL|. If a design had b123,LLQ = 0, with A1, A2, and A3 forming a defining relation, then
all two-factor linear-linear interactions are uncorrelated with a quadratic main effect, or alterna-
tively all two-factor linear-quadratic interactions are uncorrelated with a linear main effect, for
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these factors. For each set of n+ 1 factors in an OA(3n, s, 3, n), their coefficients can be parti-185

tioned according to the number of linear and quadratic effects, and their estimable interactions
correspond to a bI,T equal to zero and permutations of effects in T .

PROPOSITION 3. In an OA(3n, s, 3, n), A1 ⊗ · · · ⊗An+2 = (0, . . . , 0)′.

COROLLARY 2. For a design with

An+1 = c0 + c1A1 + · · ·+ cnAn modulo 3,
190

An+2 = d0 + d1A1 + · · ·+ dnAn modulo 3,

whereA1, . . . , An form an orthogonal array of strength n, and c0, . . . , cn, d0, . . . , dn ∈ {0, 1, 2}
with c1, . . . , cn, d1, . . . , dn 6= 0,

A1 ⊗ · · · ⊗An+2 = (0, . . . , 0)′.

These results show how two-factor interactions can be orthogonal to n-factor interactions. An-
other interpretation is of main effects being orthogonal to (n+ 1)-factor interactions, if they are
valid contrasts. Proposition 3 further eliminates the need to calculate indicator function coeffi-195

cients guaranteed to be zero for certain designs.

5. CONDITIONS FOR ESTIMABLE INTERACTIONS

Conditions that yield estimable interactions are now considered. As before, Proposition 1 is
instrumental in proving these results.

PROPOSITION 4. For factors A1, A2, A3 forming an orthogonal array of strength 2 in F ,200

b123,T1T2L = 0 for all T1, T2 ∈ {L,Q} if and only if |F123,T1T2L| = |F123,T1T2Q| for all T1, T2 ∈
{L,Q}, and it is impossible for b123,T1T2Q = 0 for all T1, T2 ∈ {L,Q} if |F|/9 is not divisible
by 3.

PROPOSITION 5. For factors A1, A2, A3 forming an orthogonal array of strength 2 in F , if∑
x∈F :
x1x2=1

X3,L(x) =
∑
x∈F :

x1x2=−1

X3,L(x) = 0,

then b123,LLL = b123,QQL = 0. Furthermore, if these factors form a defining relation, then205

b123,QLQ = b123,LQQ = 0.

Proposition 4 gives a necessary and sufficient condition for (A3)L to be orthogonal to all
two-factor interactions (A1A2)T1T2 , and a necessary condition for (A3)Q to be orthogonal to all
(A1A2)T1T2 . Proposition 5 differs from Proposition 4 because it considers a specific structure
on the runs that yields uncorrelated main effects and two-factor interactions. It has the following210

practical implication: for quantitative factors, with−1 and 1 being the smallest and largest levels,
respectively, for each, uncorrelated main effects and two-factor interactions are achievable by
having symmetry in a subset of runs. This is expressed in field notation in the following corollary.

COROLLARY 3. For factors A1, A2, A3 with A3 = d1A1 + d2A2 modulo 3 in F , b123,LLL =
b123,QQL = b123,LQQ = b123,QLQ = 0 if and only if d1 = d2 = 2 modulo 3.215

One may need to design an experiment in which the effect hierarchy principle (Wu & Hamada,
2009, p. 172) is violated, e.g., some factors are more important through two-factor interactions.
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The following proposition introduces a design construction technique for the linear-quadratic
system that can be useful in such situations.

PROPOSITION 6. If An+2 = c0 + c1A1 + · · ·+ cnAn modulo 3, and A1, . . . , An, An+1 220

form an orthogonal array of strength n+ 1, then A1 ⊗ · · · ⊗An+1 ⊗An+2 = (0, . . . , 0)′.

COROLLARY 4. If

Aj = c0 + c1A1 + · · ·+ cnAn modulo 3,

Aj′ = d0 + d1A1 + · · ·+ dnAn + dn+1An+1 + · · ·+ dn+mAn+m modulo 3,

where at least one of dn+i 6= 0 modulo 3 for i = 1, . . . ,m, and A1, . . . , An+m form an orthog-
onal array of strength n+m, then A1 ⊗ · · · ⊗An ⊗Aj ⊗Aj′ = (0, . . . , 0)′. 225

To illustrate the statistical relevance of these results, consider designing a three-level frac-
tional factorial with four factors and 27 runs, in which interest is on two-factor interactions.
For the 34−1IV design with A4 = A1 +A2 +A3 modulo 3, certain two-factor interactions are
fully aliased with other two-factor interactions under orthogonal components, and are only par-
tially aliased under the linear-quadratic system. Now consider the design with aliasing rela- 230

tion A4 = 2A1 + 2A2 modulo 3, with A1, A2, A3 forming an orthogonal array of strength 3.
From Corollary 3 and Proposition 6, all two-factor interactions involving distinct factors are
orthogonal, (A4)L is uncorrelated with (A1A2)LL, (A1A2)QQ, and (A4)Q is uncorrelated with
(A1A2)LQ, (A1A2)QL. If the main effects of A4 are not significant, we can entertain two-factor
interactions involving distinct factors, and those involving the same factor will only be partially 235

aliased. Proposition 6 and Corollary 4 offer the interesting possibility of high-order factorial
effects being legitimate contrasts, while low-order effects are not: for this design, four-factor
interactions are valid contrasts, whereas three-factor interactions of A1, A2, A4 are not.

6. CONCLUDING REMARKS

The operation and results in this paper help in understanding properties of the linear-quadratic 240

system. For example, Cheng & Ye (2004) provide a definition for the generalized wordlength
pattern of a design that involves indicator function coefficients. By virtue of Proposition 1, an
expression for the generalized wordlength pattern that makes explicit the contribution of low-
order coefficients can be derived. As pointed out by a referee, our operation can be applied to
qualitative factors as well, and any permutation in the coding of qualitative variables might lead 245

to designs with different geometric characteristics and models (Cheng & Ye, 2004).
These results can also aid in deriving bounds on the magnitude of indicator function coef-

ficients, hence on correlations among contrasts, because the ⊗ operation only requires counts
of ±1 level combinations. Similarly, calculation of bounds for D- and G-efficiencies should be
simpler with this operation, and hence one can better explore and understand the eligibility of 250

designs for factor screening and response surface exploration (Cheng & Wu, 2001).
Recall that the linear-quadratic system is generated by reparametrizing the levels of quantita-

tive factors using orthogonal polynomials. Accordingly, the results in this paper can be extended
to designs with more than three levels per factor by means of orthogonal polynomials.

Examples presented here used standard field constructions for regular designs. As seen in Ex- 255

ample 2, partial aliasing calculations are also transparent for generator-transformation designs.
The role of a design’s construction in its analysis under the linear-quadratic system is an impor-
tant question that warrants further investigation.
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APPENDIX 1
An additional operation for further simplification of proofs

For factors A1, A2, define A1 �A2 = (b12,LL, b12,LQ)
′, A2

1 �A2 = (b12,QL, b12,QQ)
′. Here, A1 �

A2 and A2
1 �A2 divide A1 ⊗A2 by whether A1 has a linear or quadratic effect, so that A1 ⊗A2 =265

(A1 �A2, A
2
1 �A2)

′. Sequential application of ⊗ and � is defined in the manner below:

A1 � (A2 ⊗A3) = (b123,LLL, b123,LLQ, b123,LQL, b123,LQQ)
′,

A2
1 � (A2 ⊗A3) = (b123,QLL, b123,QLQ, b123,QQL, b123,QQQ)

′.

This is easily generalized to more factors, and provides another calculation in lieu of ⊗. For example, for
factors A1, A2, A3 forming an orthogonal array of strength two:

A1 � (A2 ⊗A3) = 2−333−s


2

⊗
j=1

(
1 −1
1 1

)
 ∑
x∈F23,LL

X1,L(x),
∑

x∈F23,LQ

X1,L(x),
∑

x∈F23,QL

X1,L(x),
∑

x∈F23,QQ

X1,L(x)

′ ,
(A1)

A2
1 � (A2 ⊗A3) = 2−333−s


2

⊗
j=1

(
1 −1
1 1

)
 ∑
x∈F23,LL

X1,L(x)
2,
∑

x∈F23,LQ

X1,L(x)
2,
∑

x∈F23,QL

X1,L(x)
2,
∑

x∈F23,QQ

X1,L(x)
2

′
(A2)

270

− (0, 0, 0, bφ,φ)
′.

APPENDIX 2
Proofs

Proof of Proposition 1. First consider the proof of (3), with k > j + 1. Now∑
x∈F

Xi1,L(x) · · ·Xij ,L(x)Xij+1,L(x)
2Xij+1,Q(x) · · ·Xik,L(x)

2Xik,Q(x) =275 ∑
x∈D

F (x)Xi1,L(x) · · ·Xij ,L(x)Xij+1,L(x)
2Xij+1,Q(x) · · ·Xik,L(x)

2Xik,Q(x) =∑
x∈D

∑
I∗∈P

∑
T∗∈TI∗

bI∗,T∗XI∗,T∗(x)Xi1,L(x) · · ·Xij ,L(x)Xij+1,L(x)
2Xij+1,Q(x) · · ·Xik,L(x)

2Xik,Q(x).

Recalling Lemma 1 and noting thatXi,L(x) = 0 whenXi,Q(x) = −2, andXi,Q(x) = 1 whenXi,L(x) =
±1, the expression above is rewritten as

bi1...ik,T1...Tk

∑
x∈D

Xi1,L(x)
2 · · ·Xik,L(x)

2 + bi1...ij ,T1...Tj

∑
x∈D

Xi1,L(x)
2 · · ·Xik,L(x)

2
280

+

k−j−1∑
m=1

∑
l1,...,lm∈{j+1,...,k}:

l1<...<lm

{
bi1...ijil1 ...ilm ,T1...TjTl1

...Tlm

∑
x∈D

Xi1,L(x)
2 · · ·Xik,L(x)

2

}
.

This expression is simplified by using the fact that
∑
x∈DXi1,L(x)

2 · · ·Xik,L(x)
2 = 2k3s−k. The re-

mainder of the proposition is proved in a similar fashion. �
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LEMMA B1. For an OA(9, s, 3, 2), |b123,LLQ| = |b123,LQL| = |b123,QLL| and |b123,LQQ| =
|b123,QLQ| = |b123,QQL|. 285

Proof. An OA(9, 3, 3, 2) is a Latin square. Computing b123,LLQ, b123,LQL, and b123,QLL for each of
the 12 Latin squares of order 3, it follows that |b123,LLQ| = |b123,LQL| = |b123,QLL|. The other set of
relationships are similarly established. Thus the result is true for OA(9, 3, 3, 2), and because the projection
of an OA(9, s, 3, 2) on any 3 factors is a Latin square, the result holds for any s > 2. �

Proof of Proposition 2. From Lemma B1, this holds for n = 2. Assume it is true for n = m, where 290

m ≥ 2. Then consider m+ 2 factors A1, . . . , Am+2 in an orthogonal array F of strength m+ 1 with
3m+1 runs. We see that∑

x∈F
X1,L(x) · · ·Xm+1,L(x)Xm+2,L(x)

2 = −
∑

x∈F1,Q

X2,L(x) · · ·Xm+1,L(x)Xm+2,L(x)
2

+
∑

x∈F1,L

X2,L(x) · · ·Xm+1,L(x)Xm+2,L(x)
2.

AsF is an orthogonal array of strengthm+ 1, for all x ∈ F1,Q, anym factors chosen fromA2, . . . , Am+2 295

form an orthogonal array of strength m and 3m runs. The same statement holds true for all x ∈ F1,L. By
the inductive hypothesis, we have

−
∑

x∈F1,Q

X2,L(x) · · ·Xm+1,L(x)Xm+2,L(x)
2 = ∓

∑
x∈F1,Q

X2,L(x) · · ·Xm+1,L(x)
2Xm+2,L(x),

∑
x∈F1,L

X2,L(x) · · ·Xm+1,L(x)Xm+2,L(x)
2 = ±

∑
x∈F1,L

X2,L(x) · · ·Xm+1,L(x)
2Xm+2,L(x),

so that ∑
x∈F

X1,L(x) · · ·Xm+1,L(x)Xm+2,L(x)
2 = ±

∑
x∈F

X1,L(x) · · ·Xm+1,L(x)
2Xm+2,L(x).

From Proposition 1, these equalities establish that |b1...(m+2),L...LQ| = |b1...(m+2),L...QL|. The other 300

equalities follow similarly, thus completing the induction step. �

LEMMA B2. For factors A1, A2, A3, A4 in an OA(9, s, 3, 2), A1 ⊗A2 ⊗A3 ⊗A4 = (0, . . . , 0)
′
.

Proof. The proof follows in a similar manner as that of Lemma B1 by noting that the projection of the
OA(9, s, 3, 2) on any four factors is a Graeco-Latin square, and applying Proposition 1. �

Proof of Proposition 3. A similar induction argument as in Proposition 2, combined with Lemma B2 305

and the relations among the indicator function coefficients given in Proposition 1, yields the result. �

Proof of Proposition 4. The first statement follows from (A1) and the fact that the Hadamard matrix in
this equation is non-singular. To prove the second, A2

3 � (A1 ⊗A2) in (A2) is written as:

2−333−s


2

⊗
j=1

(
1 −1
1 1

)





∑
x∈F12,LL

X3,L(x)
2

∑
x∈F12,LQ

X3,L(x)
2

∑
x∈F12,QL

X3,L(x)
2

∑
x∈F12,QQ

X3,L(x)
2


− 213s−3


k

3s−2

k
3s−2

k
3s−2

k
3s−2




,
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where k = |F|/9. The expression above is (0, . . . , 0)
′

if and only if∑
x∈F12,LL

X3,L(x)
2 =

∑
x∈F12,LQ

X3,L(x)
2 =

∑
x∈F12,QL

X3,L(x)
2 =

∑
x∈F12,QQ

X3,L(x)
2 =

2k

3
,

which is impossible if k is not divisible by 3. �310

Proof of Proposition 5. This follows in a straightforward manner from (A1), (A2), and Corollary 1. �

Proof of Proposition 6. First, note that for a1, . . . , an, an+2 ∈ {1, 2},∑
x∈F

X1,L(x)
a1 · · ·Xn,L(x)

anXn+1,L(x)Xn+2,L(x)
an+2 =∑

x∈Fn+1,L

X1,L(x)
a1 · · ·Xn,L(x)

anXn+2,L(x)
an+2 −

∑
x∈Fn+1,Q

X1,L(x)
a1 · · ·Xn,L(x)

anXn+2,L(x)
an+2 .

As A1, . . . , An, An+1 form an orthogonal array of strength n+ 1, the expression above is zero, and so315

by Proposition 1, An+1 � (A1 ⊗ · · · ⊗An ⊗An+2) = (0, . . . , 0)
′
. A similar reasoning leads to A2

n+1 �
(A1 ⊗ · · · ⊗An ⊗An+2) = (0, . . . , 0)

′
, establishing the proposition. �
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